

Ice Sheet System model What ISSM cannot do (yet)

Eric Larour¹, Eric RIGNOT^{1,3}, Mathieu MORLIGHEM^{1,2}, Hélène SEROUSSI^{1,2} Chris BORSTAD¹, Feras HABBAL^{1,3}, Daria HALKIDES^{1,4}, Behnaz KHAKBAZ¹, John SCHIERMEIER¹, Nicole SCHLEGEL¹

⁴Joint Institute for Regional Earth System Science & Engineering, UCLA

¹ Jet Propulsion Laboratory - California Institute of Technology

²Laboratoire MSSMat, École Centrale Paris, France

³University of California, Irvine

Larour et al.

- Outline
- Ice models
- Basal conditions
- Inversion and data assimilation
- 4 Ice/atmosphere interactions
- 6 Ice/ocean interactions
- 6 Other capabilities
- Numerics

Missing capabilities Larour et al.

Ice models

Basal conditions

Inversion and data assimilation

interactions

ice/ocean interactions

Other capabilities

Numerics

Ice models

- Ice anisotropy not included (ice fabrics)
- → Ice considered isotropic
- Cold ice model used in thermal model
- → No polythermal ice
 - · Moving grounding line based on hydrostatic equilibrium
- → Not implemented for full-Stokes (based on contact mechanics)
 - · Ice front and margins fixed in time, no calving law
- → Calving rate equal to ice velocity

Larour et al.

Ice models

Basal conditions

Inversion and data assimilation

interactions

Ice/ocean interactions

Othor conchilition

lumerics

Basal conditions

- · Basal friction fixed in time
- · Hydrology not coupled to basal friction
- · Sub-glacial hydrology only
- → No englacial hydrology

Larour et al.

Ice models

Rasal conditions

Inversion and data assimilation

Ice/atmosphere

In a /a a a a a i a tauna a

Other canabilities

Numerics

Inversions and data assimilation

Inversions limited to:

- · Ice rheology
- · Basal friction
- Ice thickness consistency with velocities
- \rightarrow Assimilation for a given time

Larour et al.

Ice models

Basal conditi

Inversion and data assimilation

Ice/atmosphere interactions

lce/ocean interaction

0.0

Jumerics

Ice/atmosphere interactions

Interaction between ice and atmosphere not modeled

- Surface mass balance transformed into ice
- → No PDD model (Positive Degree Day)
 - · Snow instantaneously transformed into ice
- → No firn compaction

Timeseries: Total Surface Mass Balance (TSMB), Discharge (O), and total Mass Balance (TMB)

Schlegel et al., in preparation

Larour et al.

Ice models

Basal conditions

Inversion and data

Ice/atmosphere interactions

Ice/ocean interactions

Other capabilities

lumerics

Ice/ocean interactions

Interaction between ice and ocean not included

- Melting rates under ice shelved prescribed
- Sea level fixed at z=0
- \rightarrow ECCO3 project to couple ocean and ice models

Schodlok et al., submitted

Larour et al.

Ice models

Rasal conditions

Inversion and data

Ice/atmosphere

lce/ocean interaction

Other capabilities

Numerics

Other capabilities

- · Post-glacial rebound
- · Rift propagations

Missing capabilities Larour et al.

Ice models

Basal conditions

Inversion and da

interactions

ice/ocean interactions

0.00

Numerics

Numerics

- · Only triangle (2D) and prismatic (3D) elements
- → No quadrangle elements
 - Only P1 (piecewise linear nodal functions)
- → No quadratic or higher-order interpolations
 - Non-linear iterations based on Picard method (fixed-point)
- → No Newton iterations
 - Direct solver used for full-Stokes model
- → No scalable solver (iteratif solver)

